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Abstract

We present an implementation of a part-of-speech

tagger based on a hidden Markov model. The

methodology enables robust and accurate tagging

with few resource requirements. Only a lexicon

and some unlabeled training text are required.

Accuracy exceeds 96%. We describe implemen-

tation strategies and optimizations which result

in high-speed operation. Three applications for

tagging are described: phrase recognition; word

sense disambiguation; and grammatical function

assignment.

1 Desiderata

Many words are ambiguous in their part of speech. For

example, \tag" can be a noun or a verb. However, when a

word appears in the context of other words, the ambiguity

is often reduced: in \a tag is a part-of-speech label," the

word \tag" can only be a noun. A part-of-speech tagger

is a system that uses context to assign parts of speech to

words.

Automatic text tagging is an important �rst step in

discovering the linguistic structure of large text corpora.

Part-of-speech information facilitates higher-level analysis,

such as recognizing noun phrases and other patterns in

text.

For a tagger to function as a practical component in a

language processing system, we believe that a tagger must

be:

Robust Text corpora contain ungrammatical con-

structions, isolated phrases (such as titles), and non-

linguistic data (such as tables). Corpora are also likely

to contain words that are unknown to the tagger. It

is desirable that a tagger deal gracefully with these

situations.

E�cient If a tagger is to be used to analyze arbi-

trarily large corpora, it must be e�cient|performing

in time linear in the number of words tagged. Any

training required should also be fast, enabling rapid

turnaround with new corpora and new text genres.

Accurate A tagger should attempt to assign the cor-

rect part-of-speech tag to every word encountered.

Tunable A tagger should be able to take advantage

of linguistic insights. One should be able to correct

systematic errors by supplying appropriate a priori

\hints." It should be possible to give di�erent hints

for di�erent corpora.

Reusable The e�ort required to retarget a tagger to

new corpora, new tagsets, and new languages should

be minimal.

2 Methodology

2.1 Background

Several di�erent approaches have been used for building

text taggers. Greene and Rubin used a rule-based ap-

proach in the TAGGIT program

[

Greene and Rubin, 1971

]

,

which was an aid in tagging the Brown corpus

[

Francis and

Ku�cera, 1982

]

. TAGGIT disambiguated 77% of the cor-

pus; the rest was done manually over a period of several

years. More recently, Koskenniemi also used a rule-based

approach implemented with �nite-state machines

[

Kosken-

niemi, 1990

]

.

Statistical methods have also been used (e.g.,

[

DeRose,

1988

]

,

[

Garside et al., 1987

]

). These provide the capability

of resolving ambiguity on the basis of most likely interpre-

tation. A form of Markov model has been widely used that

assumes that a word depends probabilistically on just its

part-of-speech category, which in turn depends solely on

the categories of the preceding two words.

Two types of training (i.e., parameter estimation) have

been used with this model. The �rst makes use of a tagged

training corpus. Derouault and Merialdo use a bootstrap

method for training

[

Derouault and Merialdo, 1986

]

. At

�rst, a relatively small amount of text is manually tagged

and used to train a partially accurate model. The model

is then used to tag more text, and the tags are manu-

ally corrected and then used to retrain the model. Church

uses the tagged Brown corpus for training

[

Church, 1988

]

.

These models involve probabilities for each word in the

lexicon, so large tagged corpora are required for reliable

estimation.

The second method of training does not require a tagged

training corpus. In this situation the Baum-Welch algo-

rithm (also known as the forward-backward algorithm) can

be used

[

Baum, 1972

]

. Under this regime the model is

called a hidden Markov model (HMM), as state transitions

(i.e., part-of-speech categories) are assumed to be unob-

servable. Jelinek has used this method for training a text

tagger

[

Jelinek, 1985

]

. Parameter smoothing can be con-

veniently achieved using the method of deleted interpola-

tion in which weighted estimates are taken from second-

and �rst-order models and a uniform probability distribu-

tion

[

Jelinek and Mercer, 1980

]

. Kupiec used word equiv-

alence classes (referred to here as ambiguity classes) based

on parts of speech, to pool data from individual words

[

Ku-

piec, 1989b

]

. The most commonwords are still represented

individually, as su�cient data exist for robust estimation.



However all other words are represented according to the

set of possible categories they can assume. In this manner,

the vocabulary of 50,000 words in the Brown corpus can

be reduced to approximately 400 distinct ambiguity classes

[

Kupiec, 1992

]

. To further reduce the number of param-

eters, a �rst-order model can be employed (this assumes

that a word's category depends only on the immediately

preceding word's category). In

[

Kupiec, 1989a

]

, networks

are used to selectively augment the context in a basic �rst-

order model, rather than using uniformly second-order de-

pendencies.

2.2 Our approach

We next describe how our choice of techniques satis�es the

criteria listed in section 1. The use of an HMM permits

complete 
exibility in the choice of training corpora. Text

from any desired domain can be used, and a tagger can be

tailored for use with a particular text database by training

on a portion of that database. Lexicons containing alter-

native tag sets can be easily accommodated without any

need for re-labeling the training corpus, a�ording further


exibility in the use of specialized tags. As the resources

required are simply a lexicon and a suitably large sam-

ple of ordinary text, taggers can be built with minimal

e�ort, even for other languages, such as French (e.g.,

[

Ku-

piec, 1992

]

). The use of ambiguity classes and a �rst-order

model reduces the number of parameters to be estimated

without signi�cant reduction in accuracy (discussed in sec-

tion 5). This also enables a tagger to be reliably trained us-

ing only moderate amounts of text. We have produced rea-

sonable results training on as few as 3,000 sentences. Fewer

parameters also reduce the time required for training. Rel-

atively few ambiguity classes are su�cient for wide cover-

age, so it is unlikely that adding new words to the lexicon

requires retraining, as their ambiguity classes are already

accommodated. Vocabulary independence is achieved by

predicting categories for words not in the lexicon, using

both context and su�x information. Probabilities corre-

sponding to category sequences that never occurred in the

training data are assigned small, non-zero values, ensuring

that the model will accept any sequence of tokens, while

still providing the most likely tagging. By using the fact

that words are typically associated with only a few part-of-

speech categories, and carefully ordering the computation,

the algorithms have linear complexity (section 3.3).

3 Hidden Markov Modeling

The hidden Markov modeling component of our tagger is

implemented as an independent module following the spec-

i�cation given in

[

Levinson et al., 1983

]

, with special at-

tention to space and time e�ciency issues. Only �rst-order

modeling is addressed and will be presumed for the remain-

der of this discussion.

3.1 Formalism

In brief, an HMM is a doubly stochastic process that gen-

erates sequence of symbols

S = fS

1

; S

2

; : : : ; S

T

g; S

i

2W 1 � i � T;

where W is some �nite set of possible symbols, by compos-

ing an underlying Markov process with a state-dependent

symbol generator (i.e., a Markov process with noise).

1

The

Markov process captures the notion of sequence depen-

dency and is described by a set of N states, a matrix of

transition probabilities A = fa

ij

g 1 � i; j � N where a

ij

is the probability of moving from state i to state j, and a

vector of initial probabilities � = f�

i

g 1 � i � N where �

i

is the probability of starting in state i. The symbol gen-

erator is a state-dependent measure on V described by a

matrix of symbol probabilities B = fb

jk

g 1 � j � N and

1 � k � M where M = jW j and b

jk

is the probability of

generating symbol s

k

given that the Markov process is in

state j.

2

In part-of-speech tagging, we will model word order de-

pendency through an underlying Markov process that op-

erates in terms of lexical tags, yet we will only be able

to observe the sets of tags, or ambiguity classes, that are

possible for individual words. The ambiguity class of each

word is the set of its permitted parts of speech, only one

of which is correct in context. Given the parameters A, B

and �, hidden Markov modeling allows us to compute the

most probable sequence of state transitions, and hence the

mostly likely sequence of lexical tags, corresponding to a

sequence of ambiguity classes. In the following, N can be

identi�ed with the number of possible tags, and W with

the set of all ambiguity classes.

Applying an HMM consists of two tasks: estimating the

model parameters A, B and � from a training set; and

computing the most likely sequence of underlying state

transitions given new observations. Maximum likelihood

estimates (that is, estimates that maximize the probability

of the training set) can be found through application of al-

ternating expectation in a procedure known as the Baum-

Welch, or forward-backward, algorithm

[

Baum, 1972

]

. It

proceeds by recursively de�ning two sets of probabilities:

the forward probabilities,

�

t+1

(j) =

"

N

X

i=1

�

t

(i)a

ij

#

b

j

(S

t+1

) 1 � t � T � 1; (1)

where �

1

(i) = �

i

b

i

(S

1

) for all i; and the backward proba-

bilities,

�

t

(i) =

N

X

j=1

a

ij

b

j

(S

t+1

)�

t+1

(j) T � 1 � t � 1; (2)

where �

T

(j) = 1 for all j. The forward probability

�

t

(i) is the joint probability of the sequence up to time

t, fS

1

; S

2

; : : : ; S

t

g, and the event that the Markov pro-

cess is in state i at time t. Similarly, the backward

probability �

t

(j) is the probability of seeing the sequence

fS

t+1

; S

t+2

; : : : ; S

T

g given that the Markov process is at

state i at time t. It follows that the probability of the

entire sequence is

P =

N

X

i=1

N

X

j=1

�

t

(i)a

ij

b

j

(S

t+1

)�

t+1

(j)

for any t in the range 1 � t � T � 1.

3

1

For an introduction to hidden Markov modeling see

[

Ra-

biner and Juang, 1986

]

.

2

In the following we will write b

j

(S

t

) for b

jk

if S

t

= s

k

.

3

This is most conveniently evaluated at t = T � 1, in which

case P =

P

N

i=1

�

T

(i)



Given an initial choice for the parameters A, B, and �

the expected number of transitions, 


ij

, from state i to

state j conditioned on the observation sequence S may be

computed as follows:




ij

=

1

P

T�1

X

t=1

�

t

(i)a

ij

b

j

(S

t+1

)�

t+1

(j):

Hence we can estimate a

ij

by:

â

ij

=




ij

P

N

j=1




ij

=

P

T�1

t=1

�

t

(i)a

ij

b

j

(S

t+1

)�

t+1

(j)

P

T�1

t=1

�

t

(i)�

t

(i)

: (3)

Similarly, b

jk

and �

i

can be estimated as follows:

^

b

jk

=

P

t3S

t

=s

k

�

t

(j)�

t

(j)

P

T

t=1

�

t

(j)�

t

(j)

(4)

and

�̂

i

=

1

P

�

1

(i)�

1

(i): (5)

In summary, to �nd maximum likelihood estimates for

A, B, and �, via the Baum-Welch algorithm, one chooses

some starting values, applies equations 3{5 to compute

new values, and then iterates until convergence. It can be

shown that this algorithm will converge, although possibly

to a non-global maximum

[

Baum, 1972

]

.

Once a model has been estimated, selecting the most

likely underlying sequence of state transitions correspond-

ing to an observation S can be thought of as a maxi-

mization over all sequences that might generate S. An

e�cient dynamic programming procedure, known as the

Viterbi algorithm

[

Viterbi, 1967

]

, arranges for this com-

putation to proceed in time proportional to T . Suppose

V = fv(t)g 1 � t � T is a state sequence that generates

S, then the probability that V generates S is,

P (v) = �

v(1)

b

v(1)

(S

1

)

T

Y

t=2

a

v(t�1)v(t)

b

v(t)

(S

t

):

To �nd the most probable such sequence we start by de�n-

ing �

1

(i) = �

i

b

i

(S

1

) for 1 � i � N and then perform the

recursion

�

t

(j) = max

1�i�N

[�

t�1

(i)a

ij

]b

j

(S

t

) (6)

and

 

t

(j) = max

1�i�N

�1

�

t�1

(i)

for 2 � t � T and 1 � j � N . The crucial observa-

tion is that for each time t and each state i one need

only consider the most probable sequence arriving at state

i at time t. The probability of the most probable se-

quence is max

1�i�N

[�

T

(i)] while the sequence itself can

be reconstructed by de�ning v(T ) = max

�1

1�i�N

�

T

(i) and

v(t � 1) =  

t

(q

t

) for T � t � 2.

3.2 Numerical Stability

The Baum-Welch algorithm (equations 1{5) and the Viter-

bi algorithm (equation 6) involve operations on products

of numbers constrained to be between 0 and 1. Since these

products can easily under
ow, measures must be taken to

rescale. One approach premultiplies the � and � probabil-

ities with an accumulating product depending on t

[

Levin-

son et al., 1983

]

. Let ~�

1

(i) = �

1

(i) and de�ne

c

t

=

"

N

X

i=1

~�

t

(i)

#

�1

1 � t � T:

Now de�ne �̂

t

(i) = c

t

~�

t

(i) and use �̂ in place of � in

equation 1 to de�ne ~� for the next iteration:

~�

t+1

(j) =

"

N

X

i=1

�̂

t

(i)a

ij

#

b

j

(S

t+1

) 1 � t � T � 1:

Note that

P

n

i=1

�̂

t

(i) = 1 for 1 � t � T . Similarly, let

^

�

T

(i) = �

T

(i) and de�ne

~

�

t

(i) = c

t

^

�

t

(i) for T � t � 1

where

^

�

t

(i) =

N

X

j=1

a

ij

b

j

(S

t+1

)

~

�

t+1

(j) T � 1 � t � 1:

The scaled backward and forward probabilities, �̂ and

^

�, can be exchanged for the unscaled probabilities in equa-

tions 3{5 without a�ecting the value of the ratios. To

see this, note that �̂

t

(i) = C

t

1

�

t

(i) and

^

�

t

(i) = �

t

(i)C

T

t+1

where

C

j

i

=

j

Y

t=i

c

t

:

Now, in terms of the scaled probabilities, equation 5, for

example, can be seen to be unchanged:

�̂

1

(i)

^

�

1

(i)

P

N

i=1

�̂

T

(i)

=

C

1

1

�

1

(i)�

1

(i)C

T

2

P

N

i=1

C

T

1

�

T

(i)

= �̂

i

:

A slight di�culty occurs in equation 3 that can be cured

by the addition of a new term, c

t+1

, in each product of the

upper sum:

P

T�1

t=1

�̂

t

(i)a

ij

b

j

(S

t+1

)

^

�

t+1

(j)c

t+1

P

T�1

t=1

�̂

t

(i)

^

�

t

(i)

= â

ij

:

Numerical instability in the Viterbi algorithm can be

ameliorated by operating on a logarithmic scale

[

Levinson

et al., 1983

]

. That is, one maximizes the log probability of

each sequence of state transitions,

log(P (v)) = log(�

v(1)

) + log(b

v(1)

(S

1

)) +

T

X

t=2

log(a

v(t�1)v(t)

) + log(b

v(t)

(S

t

)):

Hence, equation 6 is replaced by

�

t

(j) = max

1�i�N

[�

t�1

(i) + log(a

ij

)] + log b

j

(S

t

):

Care must be taken with zero probabilities. However, this

can be elegantly handled through the use of IEEE negative

in�nity

[

P754, 1981

]

.



3.3 Reducing Time Complexity

As can be seen from equations 1{5, the time cost of training

is O(TN

2

). Similarly, as given in equation 6, the Viterbi

algorithm is also O(TN

2

). However, in part-of-speech tag-

ging, the problem structure dictates that the matrix of

symbol probabilities B is sparsely populated. That is,

b

ij

6= 0 i� the ambiguity class corresponding to symbol j

includes the part-of-speech tag associated with state i. In

practice, the degree of overlap between ambiguity classes

is relatively low; some tokens are assigned unique tags, and

hence have only one non-zero symbol probability.

The sparseness of B leads one to consider restructuring

equations 1{6 so a check for zero symbol probability can

obviate the need for further computation. Equation 1 is

already conveniently factored so that the dependence on

b

j

(S

t+1

) is outside the inner sum. Hence, if k is the average

number of non-zero entries in each row of B, the cost of

computing equation 1 can be reduced to O(kTN ).

Equations 2{4 can be similarly reduced by switching the

order of iteration. For example, in equation 2, rather than

for a given t computing �

t

(i) for each i one at a time, one

can accumulate terms for all i in parallel. The net e�ect of

this rewriting is to place a b

j

(S

t+1

) = 0 check outside the

innermost iteration. Equations 3 and 4 submit to a similar

approach. Equation 5 is already only O(N ). Hence, the

overall cost of training can be reduced to O(kTN ), which,

in our experience, amounts to an order of magnitude speed-

up.

4

The time complexity of the Viterbi algorithm can also be

reduced to O(kTN ) by noting that b

j

(S

t

) can be factored

out of the maximization of equation 6.

3.4 Controlling Space Complexity

Adding up the sizes of the probability matrices A, B, and

�, it is easy to see that the storage cost for directly re-

presenting one model is proportional to N (N + M + 1).

Running the Baum-Welch algorithm requires storage for

the sequence of observations, the � and � probabilities,

the vector fc

i

g, and copies of the A and B matrices (since

the originals cannot be overwritten until the end of each

iteration). Hence, the grand total of space required for

training is proportional to T + 2N (T + N +M + 1).

Since N and M are �xed by the model, the only param-

eter that can be varied to reduce storage costs is T . Now,

adequate training requires processing from tens of thou-

sands to hundreds of thousands of tokens

[

Kupiec, 1989a

]

.

The training set can be considered one long sequence, it

which case T is very large indeed, or it can be broken up

into a number of smaller sequences at convenient bound-

aries. In �rst-order hidden Markov modeling, the stochas-

tic process e�ectively restarts at unambiguous tokens, such

as sentence and paragraph markers, hence these tokens

are convenient points at which to break the training set.

If the Baum-Welch algorithm is run separately (from the

same starting point) on each piece, the resulting trained

models must be recombined in some way. One obvious ap-

proach is simply to average. However, this fails if any two

4

An equivalent approach maintains a mapping from states i

to non-zero symbol probabilities and simply avoids, in the in-

ner iteration, computing products which must be zero

[

Kupiec,

1992

]

.

states are indistinguishable (in the sense that they had the

same transition probabilities and the same symbol prob-

abilities at start), because states are then not matched

across trained models. It is therefore important that each

state have a distinguished role, which is relatively easy to

achieve in part-of-speech tagging.

Our implementation of the Baum-Welch algorithm

breaks up the input into �xed-sized pieces of training text.

The Baum-Welch algorithm is then run separately on each

piece and the results are averaged together.

Running the Viterbi algorithm requires storage for the

sequence of observations, a vector of current maxes, a

scratch array of the same size, and a matrix of  indices,

for a total proportional to T +N (2+T ) and a grand total

(including the model) of T +N (N +M +T +3). Again, N

andM are �xed. However, T need not be longer than a sin-

gle sentence, since, as was observed above, the HMM, and

hence the Viterbi algorithm, restarts at sentence bound-

aries.

3.5 Model Tuning

An HMM for part-of-speech tagging can be tuned in a

variety of ways. First, the choice of tagset and lexicon

determines the initial model. Second, empirical and a pri-

ori information can in
uence the choice of starting values

for the Baum-Welch algorithm. For example, counting in-

stances of ambiguity classes in running text allows one to

assign non-uniform starting probabilities in A for a partic-

ular tag's realization as a particular ambiguity class. Alter-

natively, one can state a priori that a particular ambiguity

class is most likely to be the re
ection of some subset of its

component tags. For example, if an ambiguity class con-

sisting of the open class tags is used for unknown words,

one may encode the fact that most unknown words are

nouns or proper nouns by biasing the initial probabilities

in B.

Another biasing of starting values can arises from not-

ing that some tags are unlikely to be followed by others.

For example, the lexical item \to" maps to an ambigu-

ity class containing two tags, in�nitive-marker and to-as-

preposition, neither of which occurs in any other ambigu-

ity class. If nothing more were stated, the HMM would

have two states which were indistinguishable. This can

be remedied by setting the initial transition probabilities

from in�nitive-marker to strongly favor transitions to such

states as verb-unin
ected and adverb.

Our implementation allows for two sorts of biasing of

starting values: ambiguity classes can be annotated with

favored tags; and states can be annotated with favored

transitions. These biases may be speci�ed either as sets or

as set complements. Biases are implemented by replacing

the disfavored probabilities with a small constant (machine

epsilon) and redistributing mass to the other possibilities.

This has the e�ect of disfavoring the indicated outcomes

without disallowing them; su�cient converse data can re-

habilitate these values.

4 Architecture

In support of this and other work, we have developed a

system architecture for text access

[

Cutting et al., 1991

]

.

This architecture de�nes �ve components for such systems:



Search

Index

Analysis

Corpus

Tokenizer

Lexicon

token

ambiguity class, <stem,tag>*

stem, tag

TrainingTagging
trained HMM

character

ambiguity class

(further analysis)

Figure 1: Tagger Modules in System Context

corpus, which provides text in a generic manner; analysis,

which extracts terms from the text; index which stores

term occurrence statistics; and search, which utilizes these

statistics to resolve queries.

The part-of-speech tagger described here is implemented

as an analysis module. Figure 1 illustrates the overall ar-

chitecture, showing the tagger analysis implementation in

detail. The tagger itself has a modular architecture, isolat-

ing behind standard protocols those elements which may

vary, enabling easy substitution of alternate implementa-

tions.

Also illustrated here are the data types which 
ow be-

tween tagger components. As an analysis implementation,

the tagger must generate terms from text. In this context,

a term is a word stem annotated with part of speech.

Text enters the analysis sub-system where the �rst pro-

cessing module it encounters is the tokenizer, whose duty

is to convert text (a sequence of characters) into a sequence

of tokens. Sentence boundaries are also identi�ed by the

tokenizer and are passed as reserved tokens.

The tokenizer subsequently passes tokens to the lexicon.

Here tokens are converted into a set of stems, each anno-

tated with a part-of-speech tag. The set of tags identi�es

an ambiguity class. The identi�cation of these classes is

also the responsibility of the lexicon. Thus the lexicon de-

livers a set of stems paired with tags, and an ambiguity

class.

The training module takes long sequences of ambiguity

classes as input. It uses the Baum-Welch algorithm to

produce a trained HMM, an input to the tagging module.

Training is typically performed on a sample of the corpus

at hand, with the trained HMM being saved for subsequent

use on the corpus at large.

The tagging module bu�ers sequences of ambiguity

classes between sentence boundaries. These sequences are

disambiguated by computing the maximal path through

the HMM with the Viterbi algorithm. Operating at sen-

tence granularity provides fast throughput without loss of

accuracy, as sentence boundaries are unambiguous. The

resulting sequence of tags is used to select the appropriate

stems. Pairs of stems and tags are subsequently emitted.

The tagger may function as a complete analysis compo-

nent, providing tagged text to search and indexing com-

ponents, or as a sub-system of a more elaborate analysis,

such as phrase recognition.

4.1 Tokenizer Implementation

The problem of tokenization has been well addressed by

much work in compilation of programming languages. The

accepted approach is to specify token classes with reg-

ular expressions. These may be compiled into a sin-

gle deterministic �nite state automaton which partitions

character streams into labeled tokens

[

Aho et al., 1986,

Lesk, 1975

]

.

In the context of tagging, we require at least two to-

ken classes: sentence boundary and word. Other classes

may include numbers, paragraph boundaries and various

sorts of punctuation (e.g., braces of various types, com-

mas). However, for simplicity, we will henceforth assume

only words and sentence boundaries are extracted.

Just as with programming languages, with text it is not

always possible to unambiguously specify the required to-

ken classes with regular expressions. However the addition

of a simple lookahead mechanism which allows speci�ca-

tion of right context ameliorates this

[

Aho et al., 1986,

Lesk, 1975

]

. For example, a sentence boundary in English

text might be identi�ed by a period, followed by white-

space, followed by an uppercase letter. However the up-



percase letter must not be consumed, as it is the �rst com-

ponent of the next token. A lookahead mechanism allows

us to specify in the sentence-boundary regular expression

that the �nal character matched should not be considered

a part of the token.

This method meets our stated goals for the overall sys-

tem. It is e�cient, requiring that each character be exam-

ined only once (modulo lookahead). It is easily parameter-

izable, providing the expressive power to concisely de�ne

accurate and robust token classes.

4.2 Lexicon Implementation

The lexicon module is responsible for enumerating parts of

speech and their associated stems for each word it is given.

For the English word \does," the lexicon might return \do,

verb" and \doe, plural-noun." It is also responsible for

identifying ambiguity classes based upon sets of tags.

We have employed a three-stage implementation:

First, we consult a manually-constructed lexicon to �nd

stems and parts of speech. Exhaustive lexicons of this sort

are expensive, if not impossible, to produce. Fortunately,

a small set of words accounts for the vast majority of word

occurences. Thus high coverage can be obtained without

prohibitive e�ort.

Words not found in the manually constructed lexicon

are generally both open class and regularly in
ected. As

a second stage, a language-speci�c method can be em-

ployed to guess ambiguity classes for unknown words. For

many languages (e.g., English and French), word su�xes

provide strong cues to words' possible categories. Prob-

abalistic predictions of a word's category can be made

by analyzing su�xes in untagged text

[

Kupiec, 1992,

Meteer et al., 1991

]

.

As a �nal stage, if a word is not in the manually con-

structed lexicon, and its su�x is not recognized, a default

ambiguity class is used. This class typically contains all

the open class categories in the language.

Dictionaries and su�x tables are both e�ciently imple-

mentable as letter trees, or tries

[

Knuth, 1973

]

, which re-

quire that each character of a word be examined only once

during a lookup.

5 Performance

In this section, we detail how our tagger meets the desider-

ata that we outlined in section 1.

5.1 E�cient

The system is implemented in CommonLisp

[

Steele, 1990

]

.

All timings reported are for a Sun SPARCStation2. The

English lexicon used contains 38 tags (M = 38) and 174

ambiguity classes (N = 174).

Training was performed on 25,000 words in articles se-

lected randomly from Grolier's Encyclopedia. Five itera-

tions of training were performed in a total time of 115 CPU

seconds. Following is a time breakdown by component:

Training: average �seconds per token

tokenizer lexicon 1 iteration 5 iterations total

640 400 680 3400 4600

Tagging was performed on 115,822 words in a collection

of articles by the journalist Dave Barry. This required a

total of of 143 CPU seconds. The time breakdown for this

was as follows:

Tagging: average �seconds per token

tokenizer lexicon Viterbi total

604 388 233 1235

It can be seen from these �gures that training on a new

corpus may be accomplished in a matter of minutes, and

that tens of megabytes of text may then be tagged per

hour.

5.2 Accurate and Robust

When using a lexicon and tagset built from the tagged text

of the Brown corpus

[

Francis and Ku�cera, 1982

]

, training

on one half of the corpus (about 500,000 words) and tag-

ging the other, 96% of word instances were assigned the

correct tag. Eight iterations of training were used. This

level of accuracy is comparable to the best achieved by

other taggers

[

Church, 1988, Merialdo, 1991

]

.

The Brown Corpus contains fragments and ungrammat-

icalities, thus providing a good demonstration of robust-

ness.

5.3 Tunable and Reusable

A tagger should be tunable, so that systematic tagging

errors and anomalies can be addressed. Similarly, it is im-

portant that it be fast and easy to target the tagger to

new genres and languages, and to experiment with di�er-

ent tagsets re
ecting di�erent insights into the linguistic

phenomena found in text. In section 3.5, we describe how

the HMM implementation itself supports tuning. In ad-

dition, our implementation supports a number of explicit

parameters to facilitate tuning and reuse, including speci�-

cation of lexicon and training corpus. There is also support

for a 
exible tagset. For example, if we want to collapse

distinctions in the lexicon, such as those between positive,

comparative, and superlative adjectives, we only have to

make a small change in the mapping from lexicon to tagset.

Similarly, if we wish to make �ner grain distinctions than

those available in the lexicon, such as case marking on pro-

nouns, there is a simple way to note such exceptions.

6 Applications

We have used the tagger in a number of applications. We

describe three applications here: phrase recognition; word

sense disambiguation; and grammatical function assign-

ment. These projects are part of a research e�ort to use

shallow analysis techniques to extract content from unre-

stricted text.

6.1 Phrase Recognition

We have constructed a system that recognizes simple

phrases when given as input the sequence of tags for a sen-

tence. There are recognizers for noun phrases, verb groups,

adverbial phrases, and prepositional phrases. Each of these

phrases comprises a contiguous sequence of tags that satis-

�es a simple grammar. For example, a noun phrase can be

a unary sequence containing a pronoun tag or an arbitrar-

ily long sequence of noun and adjective tags, possibly pre-

ceded by a determiner tag and possibly with an embedded

possessive marker. The longest possible sequence is found

(e.g., \the program committee" but not \the program").



Conjunctions are not recognized as part of any phrase; for

example, in the fragment \the cats and dogs," \the cats"

and \dogs" will be recognized as two noun phrases. Prepo-

sitional phrase attachment is not performed at this stage of

processing. This approach to phrase recognition in some

cases captures only parts of some phrases; however, our

approach minimizes false positives, so that we can rely on

the recognizers' results.

6.2 Word Sense Disambiguation

Part-of-speech tagging in and of itself is a useful tool in

lexical disambiguation; for example, knowing that \dig" is

being used as a noun rather than as a verb indicates the

word's appropriate meaning. But many words have multi-

ple meanings even while occupying the same part of speech.

To this end, the tagger has been used in the implementa-

tion of an experimental noun homograph disambiguation

algorithm

[

Hearst, 1991

]

. The algorithm (known as Catch-

Word) performs supervised training over a large text cor-

pus, gathering lexical, orthographic, and simple syntactic

evidence for each sense of the ambiguous noun. After a pe-

riod of training, CatchWord classi�es new instances of the

noun by checking its context against that of previously ob-

served instances and choosing the sense for which the most

evidence is found. Because the sense distinctions made are

coarse, the disambiguation can be accomplished without

the expense of knowledge bases or inference mechanisms.

Initial tests resulted in accuracies of around 90% for nouns

with strongly distinct senses.

This algorithm uses the tagger in two ways: (i) to de-

termine the part of speech of the target word (�ltering

out the non-noun usages) and (ii) as a step in the phrase

recognition analysis of the context surrounding the noun.

6.3 Grammatical Function Assignment

The phrase recognizers also provide input to a system,

Sopa

[

Sibun, 1991

]

, which recognizes nominal arguments

of verbs, speci�cally, Subject, Object, and Predicative Ar-

guments. Sopa does not rely on information (such as arity

or voice) speci�c to the particular verbs involved. The

�rst step in assigning grammatical functions is to parti-

tion the tag sequence of each sentence into phrases. The

phrase types include those mentioned in section 6.1, addi-

tional types to account for conjunctions, complementizers,

and indicators of sentence boundaries, and an \unknown"

type. After a sentence has been partitioned, each simple

noun phrase is examined in the context of the phrase to its

left and the phrase to its right. On the basis of this local

context and a set of rules, the noun phrase is marked as

a syntactic Subject, Object, Predicative, or is not marked

at all. A label of Predicative is assigned only if it can be

determined that the governing verb group is a form of a

predicating verb (e.g., a form of \be"). Because this can-

not always be determined, some Predicatives are labeled

Objects. If a noun phrase is labeled, it is also annotated

as to whether the governing verb is the closest verb group

to the right or to the left. The algorithm has an accuracy

of approximately 80% in assigning grammatical functions.
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